

Copyright

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of AWC is prohibited.

© American Wood Council 2015

Description

This presentation will focus on Nail-laminated Timber (NLT), Glued-laminated Timber (GLT) and Cross-laminated Timber (CLT) structural framing members. NLT and GLT has been adopted in the IBC and utilized throughout the world for several decades on a wide variety of buildings. Often selected for aesthetic reasons or its unparalleled design flexibility, both offer superior structural performance combined with long term durability. CLT has been recently incorporated in AWC's National Design Specification® (NDS®) for Wood Construction 2015 as well as ICC's 2015 International Building Code (IBC). It has been used for over a decade in other parts of the world such as Europe and Australia and has recently made its way into North America. Similar to NLT and GLT, in addition to its structural capabilities, CLT is specified for aesthetic appeal, structural simplicity and speed of construction. Additionally, all three products offer sustainable qualities as they are manufactured from a renewable resource and store carbon. Structural and fire protection characteristics of NLT, GLT and CLT will be discussed as well as IBC code provisions that allow their specification in both residential and commercial applications for a wide variety of occupancies.

3

Learning Objectives

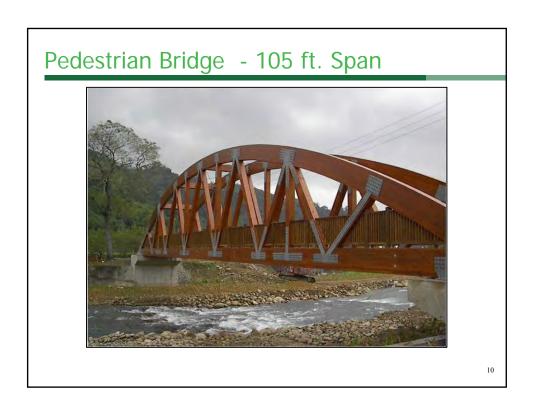
- Be able to identify code acceptance of nail-laminated timber, glued-laminated timber and cross-laminated timber.
- 2. Become familiar with a number of technology advances and standards related to nail-laminated timber, glued-laminated timber and cross-laminated timber.
- 3. Improve design knowledge on building systems made with new types of mass timber products.
- Become acquainted with the unique fire resistive characteristics of nail-laminated timber, glued-laminated timber and cross-laminated timber as it influences the use of wood in building construction.
- 5. Understand the application of NDS Chapter 16 which can be utilized to design up to 2-hours of fire-resistance for exposed wood members.

Polling Question

1. What is your profession?

- a) Architect
- b) Engineer
- c) Code Official
- d) Building Designer
- e) Other

5


Outline

- Overview & Building Code Allowances
- Nail-laminated Timber
- Glued-laminated Timber
- Cross-laminated Timber
- Fire

Warner Drive - Culver City, CA

- Type V Construction
- Assembly & Business Occupancy

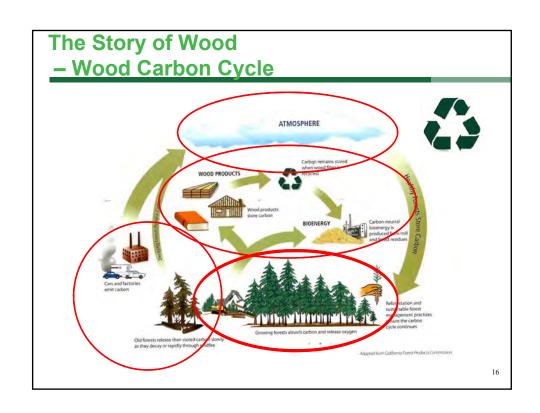
http://www.structuremag.org/w p-content/uploads/D-Spotlight-Nov121.pdf

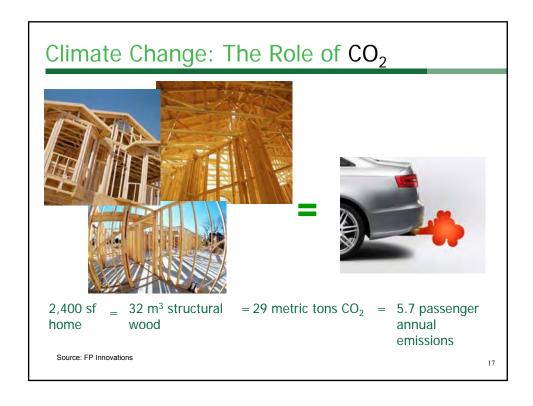
Architect: Profeta Royalty Architecture Structural Engineer: Structural Focus Completed: 2011

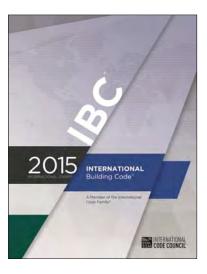
11

Warner Drive - Culver City, CA

- Nail-Laminated Timber 2x12 vertical mechanically connected w/nails
- · NDS principles of mechanics


Architect: Profeta Royalty Architecture Structural Engineer: Structural Focus Completed: 2011





Building Code

23

Where is GLT Allowed in IBC 2015?

LeMay – America's Auto Museum Tacoma, WA

- Types I and II are generally noncombustible inside and out – Roof applications
- Types III have noncombustible exteriors with interiors of any material.
- Type IV &V are generally combustible such as wood although V includes any material permitted.

Where is NLT Allowed in IBC 2015?

Chilliwack Secondary School Chilliwack, BC

Resource: StructureCraft

- Types III have noncombustible exteriors with interiors of any material.
- Type IV &V are generally combustible such as wood although V includes any material permitted.

25

Where is GLT Allowed in IBC 2015?

TABLE 601 FIRE-RESISTANCE RATING REQUIREMENTS FOR BUILDING ELEMENTS (HOURS) TYPE I TYPE II TYPE III

TYP	TYPE II		TYPE III		TYPE IV	TYPE V			
A	В	Α	В	Α	В	HT	Α	В	
3ª	2ª	1	0	1	0	HT	1	0	
3 3ª	2 2ª	1 1	0	2	2 0	2 1/HT	1	0	
See Table 602									
0	0	0	0	0	0	See Section 602.4.6	0	0	
2	2	1	0	1	0	НТ	1	0	
11/26	1 ^{b,c}	1 ^{b,c}	0°	1 ^{b,c}	0	нт	1 ^{b,c}	0	
	A 3ª 3 3ª 0	A B 3° 2° 3° 2° 3° 2° 0 0 2 2	A B A 3° 2° 1 3 2 1 3° 2° 1 0 0 0 2 2 1	A B A B 3° 2° 1 0 3 2 1 0 3 2 1 0 Second O O O O 2 2 1 0	A B A B A 3° 2° 1 0 1 3 2 1 0 2 3° 2° 1 0 1 Sec Table 6 0 0 0 0 0 0 2 2 1 0 1	A B A B A B 3° 2° 1 0 1 0 3° 2° 1 0 2 2 2 3° 2° 1 0 1 0 0 See Table 602 0 0 0 0 0 0 0 2 2 1 0 1 0	A B A B A B HT 3° 2° 1 0 1 0 HT 3° 2° 1 0 2 2 2 2 3° 2° 1 0 1 0 1/HT Sec Table 602 0 0 0 0 Sec Section 602.4.6 2 1 0 1 0 HT	A B A B A B HT A 3° 2° 1 0 1 0 HT 1 3 2 1 0 2 2 2 1 1 3° 2° 1 0 1 0 1/HT 1 Sec Table 602 0 0 0 0 0 0 0 Sec Section 602.4.6 2 2 1 0 1 0 HT 1	

For SI: 1 foot = 304.8 mm.

- a. Roof supports: Fire-resistance ratings of primary structural frame and bearing walls are permitted to be reduced by 1 hour where supporting a roof only.
- Except in Group F-1, H, M and S-1 occupancies, fire protection of structural members shall not be required, including protection of framing and decking where every part of the roof construction is 20 feet or more above any floor immediately below. Fire-retardant-treated wood members shall be allowed to be used for such unprotected members.
- c. In all occupancies, heavy timber shall be allowed where a 1-hour or less fire-resistance rating is required.
- e. Not less than the fire-resistance rating required by other sections of this code.
 e. Not less than the fire-resistance rating based on fire separation distance (see Table 602).
- f. Not less than the fire-resistance rating as referenced in Section 704.10.

Where is CLT Allowed in IBC 2015?

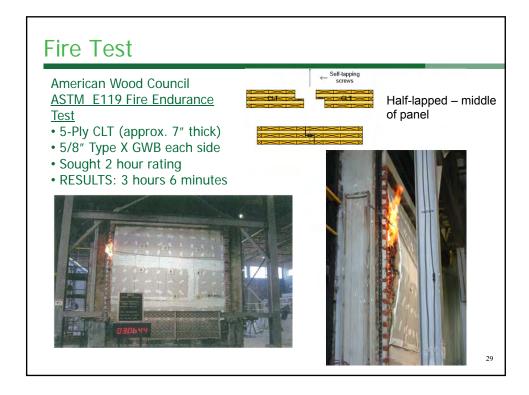
Code modifications to Ch. 23 Wood

2303.1.4 Structural glued **cross laminated timber**. Cross-laminated timbers shall be manufactured and identified as required in ANSI/APA PRG 320-2011.

CROSS-LAMINATED TIMBER. A prefabricated engineered wood product consisting of at least three layers of solid-sawn lumber or *structural composite lumber* where the adjacent layers are cross-oriented and bonded with structural adhesive to form a solid wood element.

Code modifications to Ch. 35 Reference Standards
ANSI/APA PRG 320-2011 Standard for Performance-Rated Cross-Laminated Timber

27


Fire Tests

http://www.awc.org/Code-Officials/2012-IBC-Challenges/#

http://www.awc.org/Code-Officials/2012-IBC-Challenges/Preliminary-CLT-Fire-Test-Report-FINAL-July2012.pdf

Where is CLT Allowed in IBC 2015?

Type IV Construction

602.4 Type IV. Type IV construction (Heavy Timber, HT) is that type of construction in which the exterior walls are of noncombustible materials and the interior building elements are of solid or laminated wood without concealed spaces...*Cross laminated timber* (CLT) dimensions used in this section are actual dimensions.

Where is CLT allowed in IBC 2015?

Type IV Construction – Exterior Walls

602.4.2 *Cross-laminated timber* complying with Section 2303.1.4 shall be permitted within exterior wall assemblies with a 2-hour rating or less provided:

 Exterior surface of the cross-laminated timber is protected fire retardant treated wood sheathing complying with 2303.2 and not less than 15/32 inch thick;

ΩR

- $gypsum\ board\ not\ less\ than\ 1/2\ inch\ thick;$ OR
- a noncombustible material.

31

Where is CLT allowed in IBC 2015?

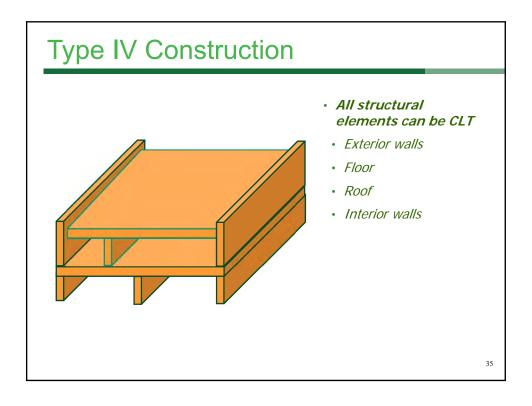
Type IV Construction – Floors

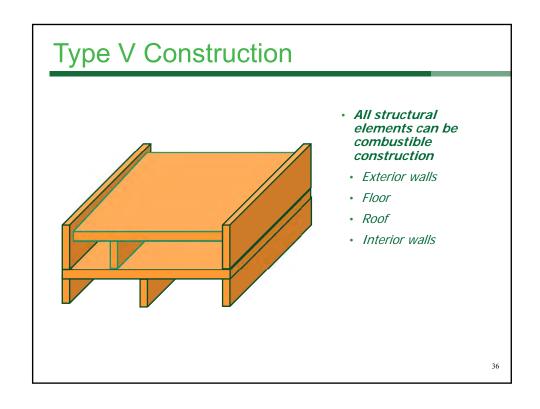
602.4.6.2 CLT. *Cross laminated timber* shall be not less than 4 inches (102 mm) in thickness. It shall be continuous from support to support and mechanically fastened to one another. *Cross laminated timber* shall be permitted to be connected to walls without a shrinkage gap providing swelling or shrinking is considered in the design...

Where is CLT allowed in IBC 2015?

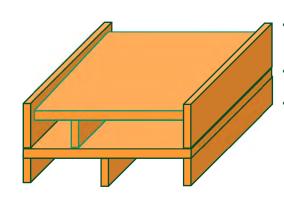
Type IV Construction – Roofs

602.4.7 Roofs. Roofs shall be without concealed spaces and wood roof decks shall be sawn or glued laminated...or of **cross laminated timber**...**Cross laminated timber** roofs shall be not less than 3 inch nominal in thickness and shall be continuous from support to support and mechanically fastened to one another.


33


Where is CLT allowed in IBC 2015?

Type IV Construction - Walls & Partitions


602.4.8.2 Exterior walls. All exterior walls shall be of one of the following:

- 1. Noncombustible materials; or
- 2. Not less than 6 inches in thickness and constructed of one of the following:
- 2.1 Fire retardant treated wood in accordance with 2303.2 and complying with 602.4.1 or
- 2.2. Cross laminated timber complying with 602.4.2.

Type III Construction

- So where could CLT go?
 - · Almost anywhere!
- Exterior Walls need to be non-combustible or FRT Wood (2 hour or less)
- Interior any material permitted by code
- Roof

37

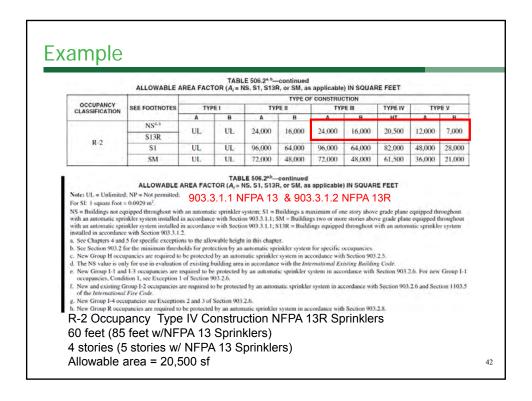
Possibilities for CLT?

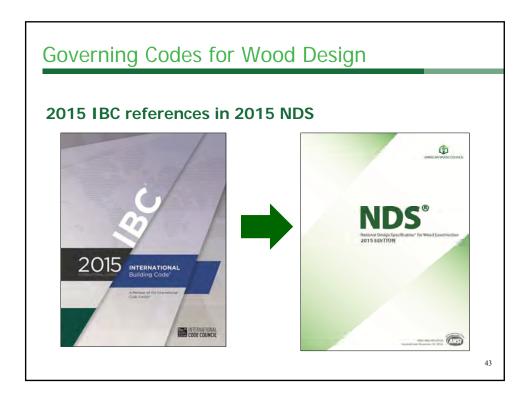
Summary

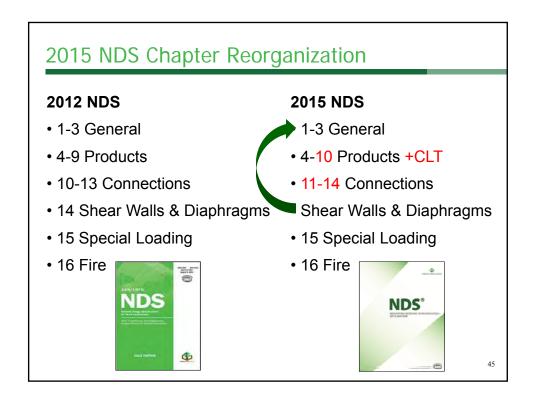
- 2015 IBC most occupancies
- Types VB and IV
- Possibly Types VA, IIIA and IIIB

Polling Question

- 2. The 2015 IBC allows cross-laminated timber to be used in the following applications?
 - a) Type III, IV, and V Construction
 - b) Roofs
 - c) Floors
 - d) All of the above


39


Table 504	.4					
Allowable	Number	of	Stories	Above	Grade	Plane


	TYPE OF CONSTITUTION											
OCCUPANCY CLASSIFICATION	Lagran was a second	TYPE		TYPE II		TYPE III		TYPE IV	TYPE V			
	SEE FOOTNOTES	А	В	A	В	Α	В	нт	Α	В		
A-I	NS	UL	5	3	2	3	2	3	2	1		
A-I	S	UL	6	4	3	4	3	4	3	2		
A-2	NS	UL	11	3	2	3	2	3	2	-1		
A-2	S	UL.	12	4	3	4	3	4	3	2		
A-3	NS	UL.	- 11	3	2	3	2	3	2	- 1		
	S	UL	12	4	3	4	3.	4	3	2		
A-4	NS	UL	11	3	2	3	2	3	2	- 1		
	S	UL	12	- 4	3	4	3	4	3	2		
0.	NS	UL	UL.	UL	UL	UL	UL.	UL	UL	UI.		
A-5	S	UL	UL	UL	UL	UL	UL	UL	UL	UL		
В	NS	UL	11	5	3	5	3	5	3	2		
В	S	UL	12	6	4	6	4	6	4	3		
E	NS	UL	- 5	3	2	3	2	3	-1	-1		
L	S	UL	6	4	3	4	3	4	2	2		
F.1	NS	UL	-11	4	2	3	2	4	2	- 1		
F-1	S	UL	12	5	3	4	3	5	3	2		
F-2	NS	UL	-11-	5	3	4	3	5	3	2		
Jr-2	S	UL.	12	6	4	5	4	6	4	3		

..

	rea Fact	·		adi o							
	ALLOWABLE A	REA FAC	TOR (A, =	TABLE 506		s applicable	IN SQUAF	RE FEET			
TYPE OF CONSTRUCTION											
OCCUPANCY CLASSIFICATION	SEE FOOTNOTES	TY	PEI	TYF	EII	TYP	EIII	TYPE IV	TY	PE V	
		A	В	A	В	A	В	HT	A	В	
	NS	UL	UL	15,500	8,500	14,000	8,500	15,000	11,500	5,500	
A-1	S1	UL	UL.	62,000	34,000	56,000	34,000	60,000	46,000	22,00	
	SM	UL	UL	46,500	25,500	42,000	25,500	45,000	34,500	16,50	
A-2	NS	UL	UL	15,500	9,500	14,000	9,500	15,000	11,500	6,000	
	SI	UL	UL	62,000	38,000	56,000	38,000	60,000	46,000	24,00	
	SM	UL	UL	46,500	28,500	42,000	28,500	45,000	34,500	18,00	
A-3	NS	UL.	UL	15,500	9,500	14,000	9,500	15,000	11,500	6,000	
	S1	UL	UL	62,000	38,000	56,000	38,000	60,000	46,000	24,00	
	SM	UL.	UL	46,500	28,500	42,000	28,500	45,000	34,500	18,00	
	NS	UI.	UL.	15,500	9,500	14,000	9,500	15,000	11,500	6,000	
A-4	S1	UL	UL	62.000	38,000	56,000	38,000	60,000	46,000	24.00	
	SM	UL	UL	46,500	28,500	42,000	28,500	45,000	34,500	18,00	
	NS	7.					UL.	UL.			
A-5	S1	UL.	UL.	UL.	UL	UL			UL	UL	
	SM				100	1.0		100			
	NS	UL.	UL	37,500	23,000	28,500	19,000	36,000	18,000	9,000	
В	SI	- UL	UL	150,000	92,000	114,000	76,000	144,000	72,000	36,00	
	SM	UL	UL	112,500	69,000	85,500	57,000	108,000	54,000	27.00	
	NS	UL	UL	26,500	14,500	23,500	14,500	25,500	18,500	9.500	
E	SI	UL	UL	106,000	-58,000	94,000	58,000	102,000	74,000	38,00	
-	SM	UL	UL	79,500	43,500	70,500	43,500	76,500	55,500	28,50	



2015 NDS

Product Chapters

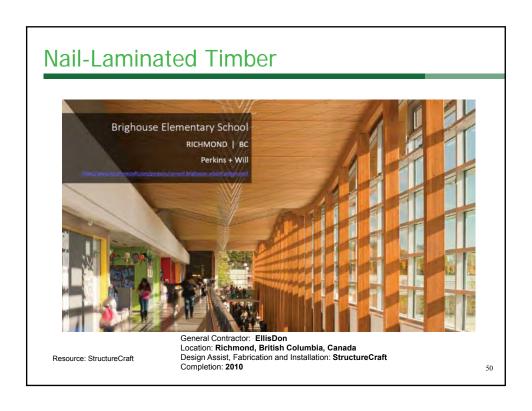
- Ch. 4 Sawn Lumber
- Ch. 5 Structural Glued Laminated Timber
- Ch. 10 Cross-Laminated Timber

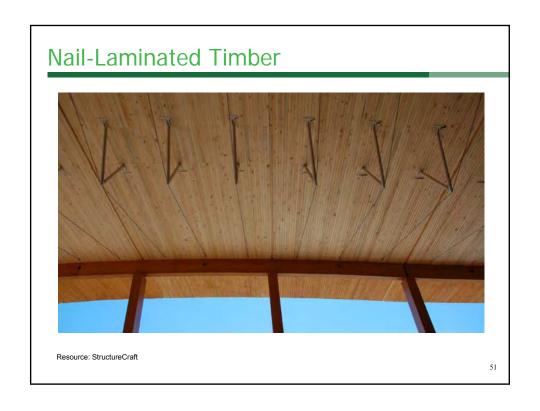
46

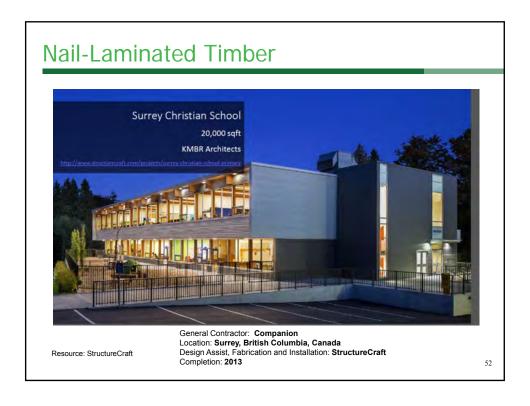
Outline

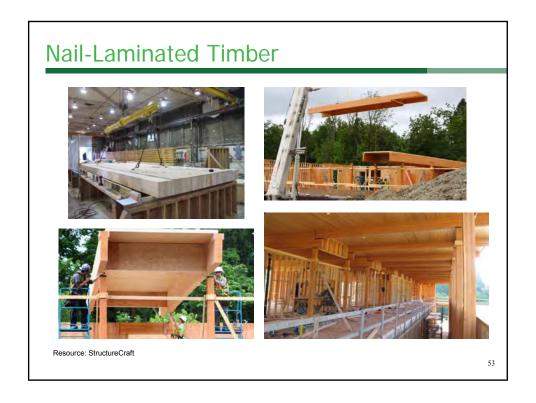
- Overview & Building Code Allowances
- Nail-laminated Timber
- Glued-laminated Timber
- Cross-laminated Timber
- Fire

Resource: StructureCraft



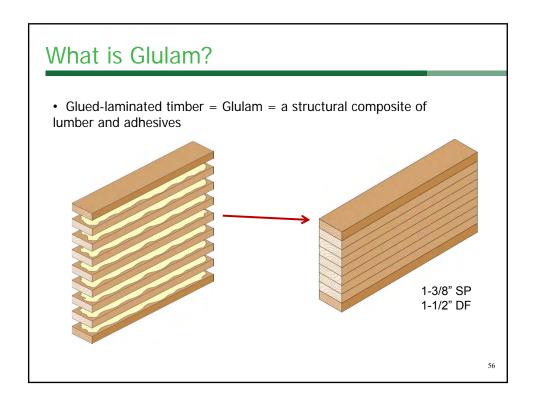

Nail-Laminated Timber

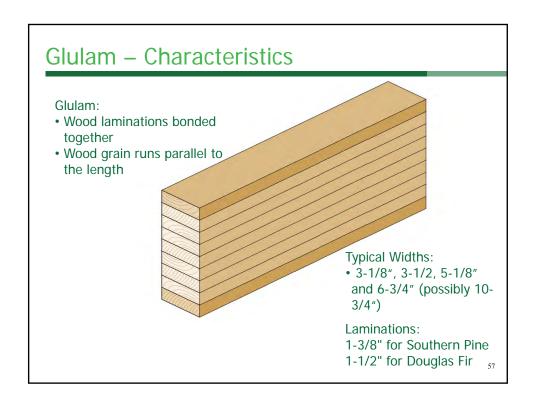

- 2304.8.3 Mechanically laminated decking. Mechanically laminated decking shall comply with Sections 2304.8.3.1 through 2304.8.3.3.
- 2304.8.3.1 General. Mechanically laminated decking consists of square-edged dimension lumber laminations set on edge and nailed to the adjacent pieces and to the supports.
- 2304.8.3.2 Nailing. The length of nails connecting laminations shall not be less than two and one-half times the net thickness of each lamination. Where decking supports are 48 inches (1219 mm) on center (o.c.) or less, side nails shall be installed not more than 30 inches (762 mm) o.c. alternating between top and bottom edges, and staggered one-third of the spacing in adjacent laminations. Where supports are spaced more than 48 inches (1219 mm) o.c., side nails shall be installed not more than 18 inches (457 mm) o.c. alternating between top and bottom edges and staggered one-third of the spacing in adjacent laminations. Two side nails shall be installed at each end of butt-jointed pieces.

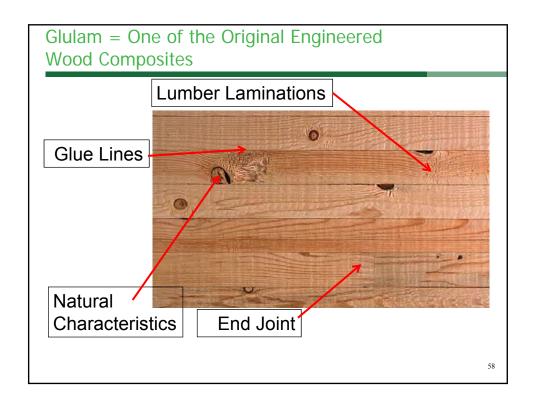

Laminations shall be toenailed to supports with 20d or larger common nails. Where the supports are 48 inches (1219 mm) o.c. or less, alternate laminations shall be toenailed to alternate supports; where supports are spaced more than 48 inches (1219 mm) o.c., alternate laminations shall be toenailed to every support.

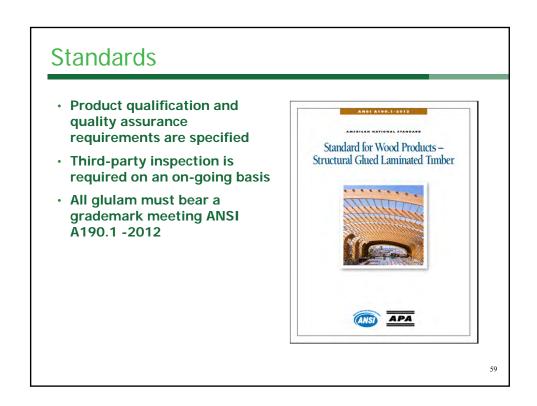
2304.8.3.3 Controlled random pattern. There shall be a minimum distance
of 24 inches (610 mm) between end joints in adjacent courses. The pieces in the first and second
courses shall bear on at least two supports with end joints in these two courses occurring on
alternate supports. A maximum of seven intervening courses shall be permitted before this pattern
is repeated.

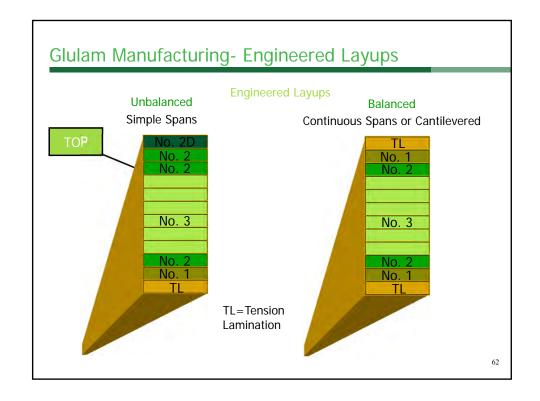
Nail-Laminated Timber

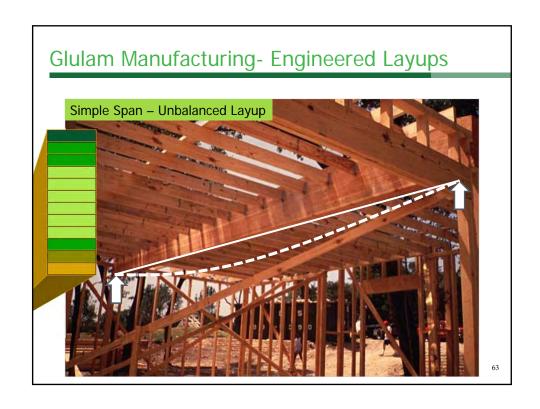

Resource: StructureCraft

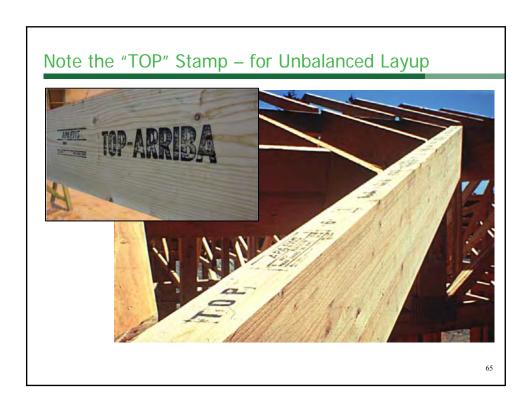

54

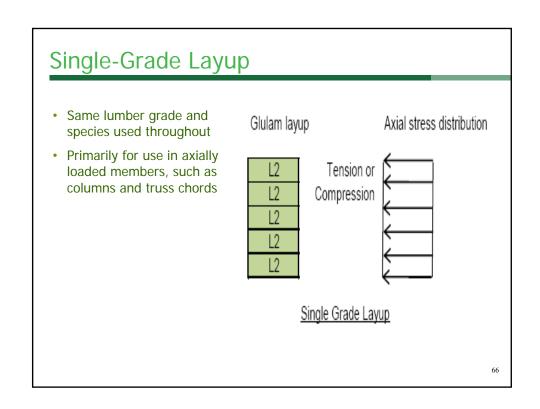

Outline

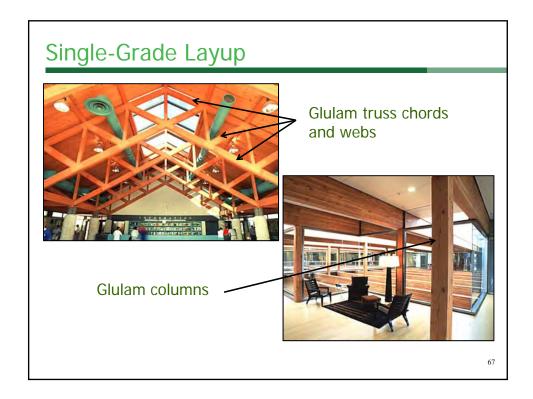

- Overview & Building Code Allowances
- Nail-laminated Timber
- Glued-laminated Timber
- Cross-laminated Timber
- Fire



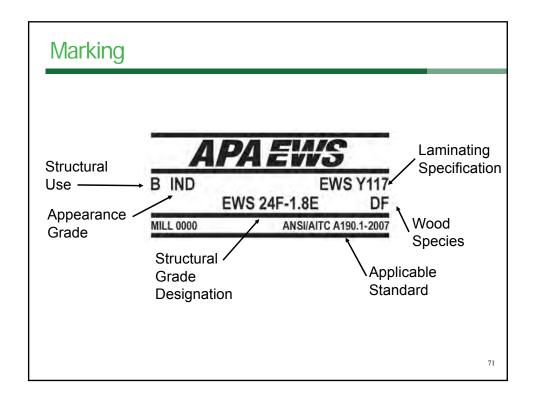



Lumber Species


- Traditional softwoods
 Douglas Fir & Southern Pine
- Other softwoods Spruce-Pine-Fir and Hem-Fir
- Naturally durable softwoods Alaska Yellow Cedar Port Orford Cedar
- Hardwoods
- · Mixed species layups



Glulam Manufacturing-Appearance Classifications

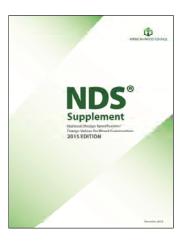

Appearance Classifications:


- Framing (-L) (3-1/2", 5-1/2")
- Industrial (-L)
- Architectural
- Premium (verify local availability)

Note: Appearance classifications do not affect design values.

APA Publication Y110

Glulam Design: 2015 NDS


2015

- 1. General Requirements for Building Design
- 2. Design Values for Structural Members
- 3. Design Provisions and Equations
- 4. Sawn Lumber
- 5. Structural Glued Laminated Timber
- 6. Round Timber Poles and Piles
- 7. Prefabricated Wood I-Joists
- 8. Structural Composite Lumber
- 9. Wood Structural Panels
- 10. Cross-laminated Timber
- 11. Mechanical Connections
- 12. Dowel-Type Fasteners
- 13. Split Ring and Shear Plate Connectors
- 14. Timber Rivets
- 15. Special Loading Conditions
- 16. Fire Design of Wood Members

73

NDS 2015 Supplement

- Sawn Lumber Grading Agencies
- 2. Species Combinations
- 3. Section Properties
- 4. Reference Design Values
 - Sawn Lumber and Timber
 - MSR and MEL
 - Decking
 - Non-North American Sawn Lumber
 - Structural Glued Laminated Timber
 - Timber Poles and Piles

NDS Stress Classes

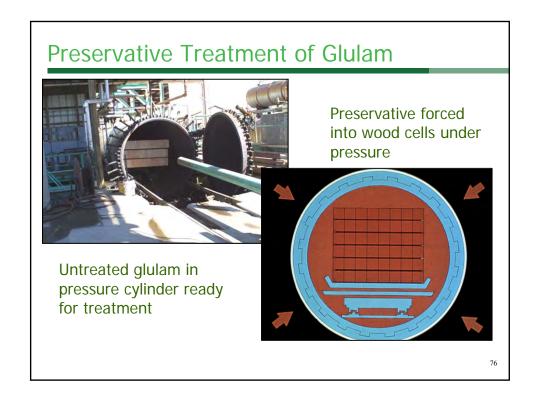
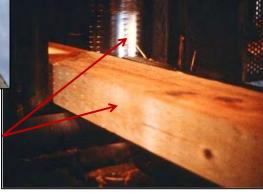

· Stress Classes Combined for Simplicity

Table 5A Reference Design Values for Structural Glued Laminated Softwood Timber

(Members stressed primarily in bending) (Tabulated design values are for normal load duration and dry service conditions. See NDS 5.3 for a comprehensive description of design value adjustment factors.)

Use with	Table	5A	Adju	stment	Factors
----------	-------	----	------	--------	---------


		Bend	ing About X	-X Axis				Bending	About Y-		Axially	Loaded	Fasteners	
			Perpendicula ces of Laminal						Parallel to \ of Laminati					
	Ber	ding	Compression Perpendicular	Shear Parallel	Modulus of		Bending	Compression Perpendicular	Shear Parallel	Modulus of		Tension Parallel to	Parallel to	Specific Gravity for
	Bottom of Beam	Top of Beam	to Grain	to Grain	For			to Grain	to Grain	Elasticity For For		Grain	Grain	Fastener Design
	Stressed in Tension	Stressed in Tension			Deflection Calculations	Stability Calculations				Deflection Calculations	Stability Calculations			
	(Positive Bending)													
Stress Class	F _{bx} ⁺	F _{bx} - (1)	F _{o.l.x}	F _{vx} (4)	E _x	E _{x min}	F _{by}	F _{c.Ly}	F _{vy} (4)(5)	Ey	E _{y min}	F _t	F.	G
	(psi)	(psi)	(psi)	(psi)	(10 ⁶ psi)	(10 ⁶ psi)	(psi)	(psi)	(psi)	(10 ⁶ psi)	(10 ⁶ psi)	(psi)	(psi)	_
16F-1.3E	1600	925	315	195	1.3	0.69	800	315	170	1.1	0.58	675	925	0.41
20F-1.5E	2000	1100	425	195 (6)	1.5	0.79	800	315	170	1.2	0.63	725	925	0.41
24F-1.7E	2400	1450	500	210 (6)	1.7	0.90	1050	315	185	1.3	0.69	775	1000	0.42
24F-1.8E	2400	1450 (2)	650	265 ⁽³⁾	1.8	0.95	1450	560	230(3)	1.6	0.85	1100	1600	0.50 (10)
26F-1.9E ⁽⁷⁾	2600	1950	650	265 ⁽³⁾	1.9	1.00	1600	560	230 (3)	1.6	0.85	1150	1600	0.50 (10)
28F-2.1E SP (7)	2800	2300	805	300	2.1 (9)	1.11 ⁽⁹⁾	1600	650	260	1.7	0.90	1250	1750	0.55
30F-2.1E SP (7)(8)	3000	2400	805	300	2.1 (9)	1.11(9)	1750	650	260	1.7	0.90	1250	1750	0.55

Preservative Treatment of Glulam

Incising used for difficult to treat species No effect on glulam strength

71

Preservative Treatments

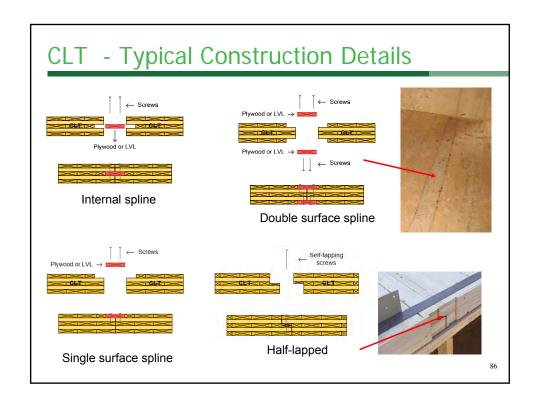
- Considerations for preservative treatments
 - Incising may be required for some hard to treat species
 - Fastener corrosion may occur with some waterborne arsenical treatments – use hot dipped galvanized or stainless steel connectors
 - · Field cuts require field applied treatments
 - Structural properties not affected by approved treatments and processes

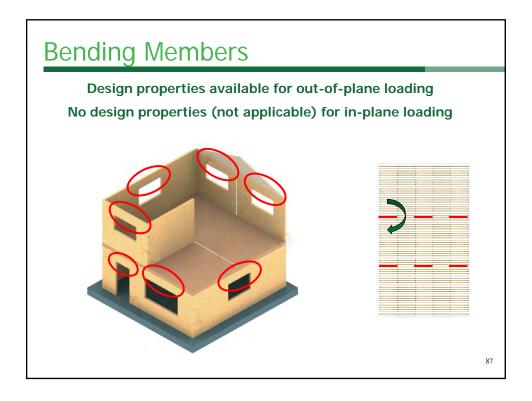
Naturally Durable Species

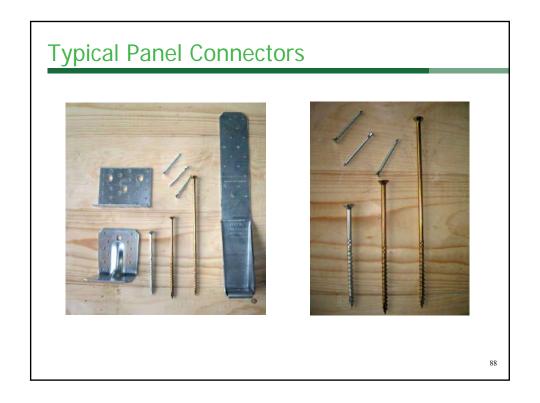
Port Orford Cedar 22F-1.8E
 Alaska Yellow Cedar 20F-1.5E
 Western Red Cedar 16F-1.3E
 California Redwood 16F-1.1E

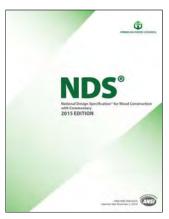
Outline

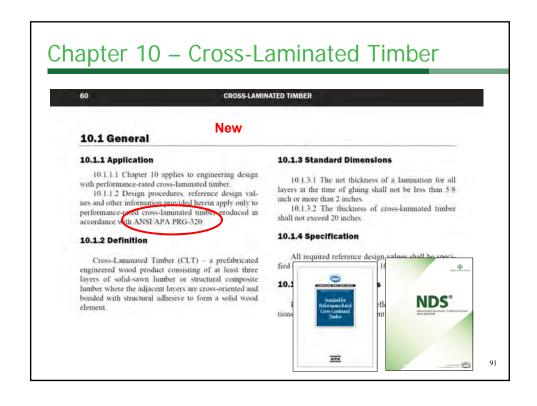
- Overview & Building Code Allowances
- Nail-Laminated Timber
- Glued-laminated Timber
- · Cross-laminated Timber
- Fire

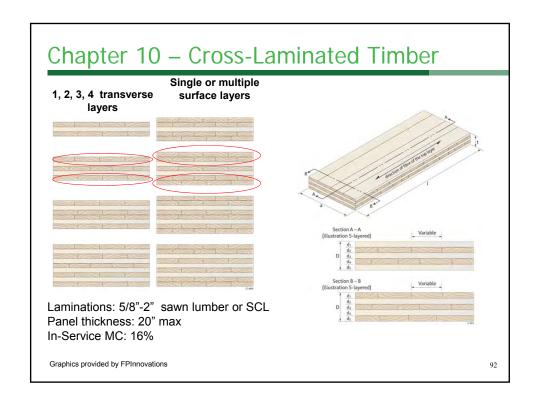











CLT Design: 2015 NDS

2015

- 1. General Requirements for Building Design
- 2. Design Values for Structural Members
- 3. Design Provisions and Equations
- 4. Sawn Lumber
- 5. Structural Glued Laminated Timber
- 6. Round Timber Poles and Piles
- 7. Prefabricated Wood I-Joists
- 8. Structural Composite Lumber
- 9. Wood Structural Panels
- 10. Cross-laminated Timber
- 11. Mechanical Connections
- 12. Dowel-Type Fasteners
- 13. Split Ring and Shear Plate Connectors
- 14. Timber Rivets
- 15. Special Loading Conditions
- 16. Fire Design of Wood Members

Chapter 10 – Cross-Laminated Timber

10.2 Reference Design Values

10.2.1 Reference Design Values

New

ber manufacturer based on the actual layup used in the manufacturing process.

Reference design values for cross-laminated timber shall be obtained from the cross-laminated timber manufacturer's literature or code evaluation report.

10.2.2 Design Section Properties

Reference design values shall be used with design section properties provided by the cross-laminated tim-

10.3 Adjustment of Reference Design Values

10.3.1 General

10.3.2 Load Duration Factor, Cp (ASD only)

Reference design values: $F_b(S_{eff})$, $F_t(A_{paralle})$, $F_v(t_v)$, $F_v(Ib/Q)_{eff}$, $F_c(A_{panalle})$, $F_c(A)$, (EI) $_{app}$, and (EI) $_{app-min}$ provided in 10.2 shall be multiplied by the adjustment factors specified in Table 10.3.1 to determine adjusted design values: $F_b(S_{eff})$, $F_t(A_{panalle})^v$, $F_v(t_v)^v$, $F_s(Ib/Q)_{eff}^v$, $F_c(A_{panalle})^v$, $F_c(A_{panalle})^v$, $F_c(A_{panalle})^v$, $F_c(A)$, (EI) $_{app}^v$, and (EI) $_{app-min}^v$.

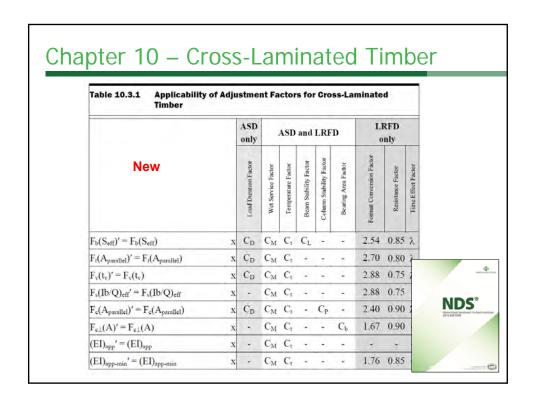
All reference design values except stiffness, (ED $_{\rm app,}$ (ED $_{\rm app,min}$, rolling shear, F,(Ib/Q) $_{\rm aff}$, and compression perpendicular to grain, F $_{\rm cl}(A)$, shall be multiplied by load duration factors, Cp, as specified in 2.3.2.

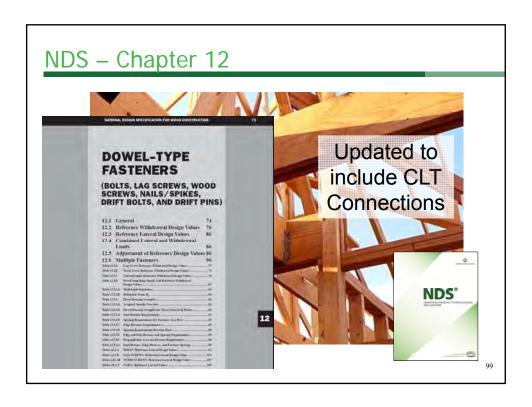
93

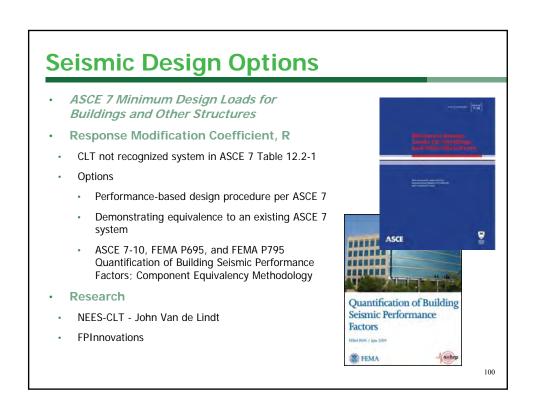
CLT Manufacturing Standard

TABLE 1 REQUIRED CHARACTERISTIC TEST VALUES $^{(\alpha,b,c,d)}$ FOR PRG 320 CLT

		Ма	jor Streng	gth Directi	M	Minor Strength Direction						
CLT Grades	f _{b,0} (psi)	E ₀ (10 ⁶ psi)	f _{t,0} (psi)	f _{c,0} (psi)	f _{v,0} (psi)	f _{s,0} (psi)	f _{ь,90} (psi)	E ₉₀ (10 ⁶ psi)	f _{v,90} (psi)	f _{s,90} (psi)		
E1	4,095	1.7	2,885	3,420	425	140	1,050	1.2	425	140		
E2	3,465	1.5	2,140	3,230	565	190	1,100	1.4	565	190		
E3	2,520	1.2	1,260	2,660	345	115	735	0.9	345	115		
E4	4,095	1.7	2,885	3,420	550	180	1,205	1.4	550	180		
V1	1,890	1.6	1,205	2,565	565	190	1,100	1.4	565	190		
V2	1,835	1.4	945	2,185	425	140	1,050	1.2	425	140		
V3	2,045	1.6	1,155	2,755	550	180	1,205	1.4	550	180		

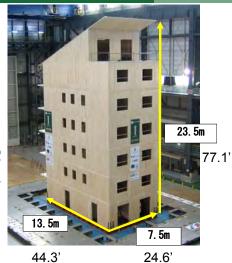

		Ma	jor Stren	BLE DESIGN PROPERTIES(a.b.c) FOR PRG 320 CLT (FOR USE Major Strength Direction								
CLT Grades	F _{b.0} (psi)	E ₀ (10° psi)	F _{1.0} (psi)	F _{c.0} (psi)	F _{v,0} (psi)	F _{s.0} (psi)	F _{11,90} (psi)	E ₉₀ (10 ⁶ psi)	F _{v.90} (psi)	F _{s.90} (psi		
E1	1,950	1.7	1,375	1,800	135	45	500	1.2	135	45		
E2	1,650	1.5	1,020	1,700	180	60	525	1.4	180	60		
E3	1,200	1.2	600	1,400	110	35	350	0.9	110	35		
E4	1,950	1.7	1,375	1,800	175	55	575	1,4	175	55		
VI	900	1.6	575	1,350	180	60	525	1.4	180	60		
V2	875	1.4	450	1,150	135	45	500	1.2	135	45		
V3	975	1.6	550	1,450	175	55	575	1,4	175	55		
dance w based o	ed values a ith the NDS n the actua	re allowable o	values sha n manufac	I be used in turing the Cl	conjunction T panel (se	with the secti Table A2).	on propertie	er size adjustm s provided by on 7.2.1	ent factor the CLT me	in accordantiactu		


CLT Manufacturing Standard


CLT layups:

- E1: 1950f-1.7E Spruce-pine-fir MSR lumber in all parallel layers and No. 3 Spruce-pine-fir lumber in all perpendicular layers
- E2: 1650f-1.5E Douglas fir-Larch MSR lumber in all parallel layers and No. 3 Douglas fir-Larch lumber in all
 perpendicular layers
- E3: 1200f-1.2E Eastern Softwoods, Northern Species, or Western Woods MSR lumber in all parallel layers and No. 3
 Eastern Softwoods, Northern Species, or Western Woods lumber in all perpendicular layers
- E4: 1950f-1.7E Southern pine MSR lumber in all parallel layers and No. 3 Southern pine lumber in all perpendicular layers
- VI: No. 2 Douglas fir-Larch lumber in all parallel layers and No. 3 Douglas fir-Larch lumber in all perpendicular layers
- V2: No. 1/No. 2 Spruce-pine-fir lumber in all parallel layers and No. 3 Spruce-pine-fir lumber in all perpendicular layers
- V3: No. 2 Southern pine lumber in all parallel layers and No. 3 Southern pine lumber in all perpendicular layers

TABLE .		BLEB	NDIN	NG CA	APACI	TIESIN	lot FO	R CLT	LISTED IN	TABLE A1	(FOR USE	IN THE U	51	
CLT							CLT L			Strength D		Minor Strength Direction		
	CLT (in.)		1		_	-	1	- 76	F _b S _{ell,0} (lbf-ff/ff)	El _{ett,0} (10° lbf-in.²/ft)	GA _{eff,0} (10° lbf/ft)	F ₆ S _{art,00} (lbf-ft/ft)	El _{ett,90} (10 ⁶ lbf-in. ² /ft)	GA _{attso} {10° lbf/f
	4 1/8	1 3/8	1 3/8	1 3/8			7		4,525	115	0.46	160	3.1	0.82
EI	6 7/8	1 3/8	1 3/8	1.3/8	1 3/8	1 3/8			10,400	440	0.92	1,370	81	1.4
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	18,375	1,089	1.4	3,150	313	1.9
	4 1/8	1 3/8	1 3/8	1 3/8					3,825	102	0.53	165	3.6	0.96
£2	6.7/8	1.3/8	1 3/8	1 3/8	1.3/8	1.3/8			8,825	389	1.1	1,440	95	1.3
	9 5/8	1 3/8	1.3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	15,600	963	1.6	3,300	364	1.7
	4 1/8	1 3/8	1 3/8	1 3/8					2,800	-81	0.35	110	2.3	0.62
E3	67/8	1 3/8	1 3/8	1 3/8	1 3/8	13/8			6,400	311	0.69	9.55	61	0.98
	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1.3/8	11,325	769	1.0	2,210	234	1.4
	4 1/8	1.3/8	1 3/8	1 3/8					4,525	115	0.53	180	3.6	0.96
E4	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1.3/8			10,425	441	1.1	1,570	95	1,4
VI	9 5/8	1 3/8	1 3/8	1 3/8	1 3/8	13/8	13/8	13/8	18,400	1,090	1.6	3,625	364	2.0
	4 1/8	1 3/8	1.3/8	1.3/8					2,090	108	0.53	165	3.6	0.96
	6 7/8	1 3/8	1.3/8	1 3/8	1 3/8	1 3/8	1		4,800	415	1.1	1,440	95	1.3
	9.5/8	1 3/8	1 3/8	1 3/8	1.3/8	1 3/8	1 3/8	1 3/8	8,500	1,027	1.6	3,300	364	1.9
	4 1/8	1 3/8	1 3/8	1 3/8					2,030	95	0.46	160	3.1	0.82
V2	6 7/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8			4,675	363	0.91	1,370	-81	1.2
	9.5/8	1.3/8	1 3/8	1 3/8	1 3/8	1 3/8	13/8	1 3/8	8,275	898	1.4	3,150	312	1.6
	4 1/8	1 3/8	1.3/8	1 3/8					2,270	108	0.53	180	3.6	0.96
V3	67/8	1 3/8	1.3/8	1 3/8	1 3/8	1 3/8			5,200	415	1.1	1,570	95	1,3
	9.5/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	1 3/8	13/8	9,200	1,027	1.6	3,625	364	1.9



Shake Table Tests on 7-story Building

- · Conducted at E-Defense
- Building weight 270t
 - Self weight 120t
- Added weight 150t
- Panel thickness
- 140 mm (5.5") floors 1 and 2
- 125 mm (4.9") floors 3 and 4
- 85 mm (3.3") top 3 floors
- Wall panels length 2.3 m (7.5')

101

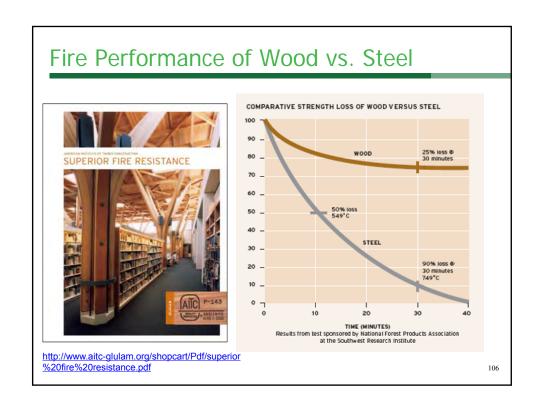
Polling Question

- 4. Cross-laminated timber panels used in bearing wall applications require additional framing above the openings in the panel
 - a) True
 - b) False

Outline

- Overview & Building Code Allowances
- Nail-Laminated Timber
- Glued-laminated Timber
- Cross-laminated Timber
- Fire

103

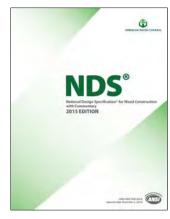

How is Fire-Resistance Provided?

- IBC 703 Fire-Resistance Ratings and Fire Tests
 - IBC Section 703.2 Tested assemblies tested in accordance with ASTM E119 or UL 263
 - IBC 703.3 Methods for determining fire resistance
 - IBC Section 721 Deemed to comply tables (prescriptive)
 - IBC Section 722 Calculated Fire Resistance

NOTE: Type IV Construction – for other than the walls, HT – required dimensions have performance presumed to be adequate

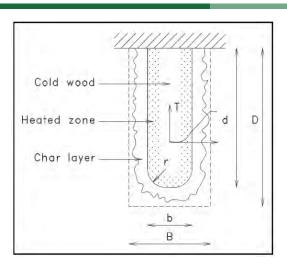
Chapter 16 - Fire (ASD)

- Fire resistance up to <u>two hours</u>
 - Columns
 - Beams
 - · Tension Members
 - ASD only
- Products
 - Lumber
 - Glulam
 - SCL
 - Decking
 - CLT NEW


SECTION 722 CALCULATED FIRE RESISTANCE

722.1 General. The provisions of this section contain procedures by which the *fire resistance* of specific materials or combinations of materials is established by calculations. These procedures apply only to the information contained in this section and shall not be otherwise used. The calculated *fire resistance* of concrete, concrete masomy and clay masonry assemblies shall be permitted in accordance with ACI 216.1/TMS 0216. The calculated *fire resistance* of steel assemblies shall be permitted in accordance with Chapter 5 of ASCB 29. The calculated *fire resistance* of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AF&PA *National Design Specification for Wood Construction (NDS)*.

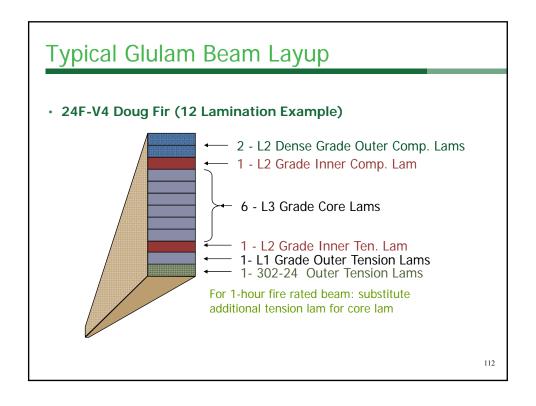
107

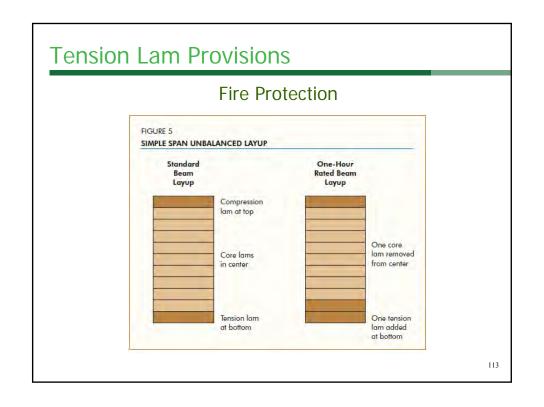

2015 NDS Methodology

- · Chapter 16 Fire Design of Wood Members
- · Mechanics Based Model
- · Supported by empirical data
- · NLT, GLT & CLT

Chapter 16 – Calculated Resistance

 Fire resistance of exposed wood members may be calculated using the provisions of NDS Chapter 16

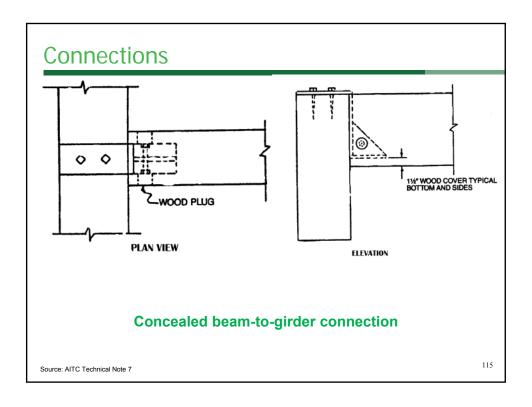


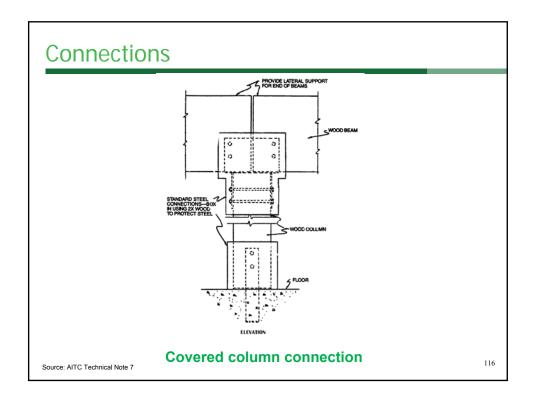


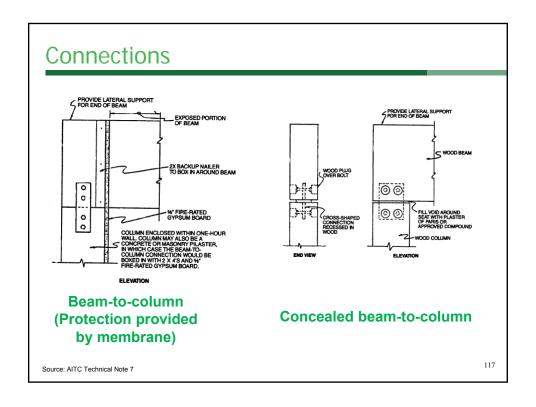
109

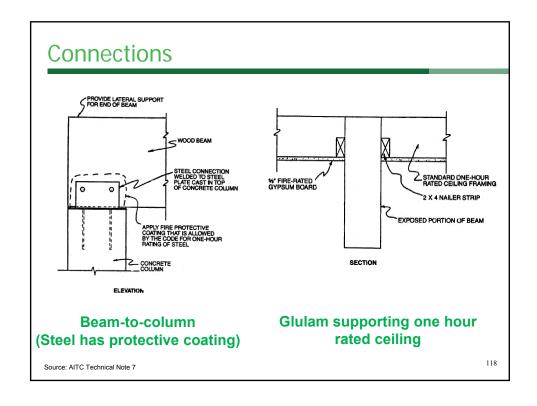
Fire-resistant NLT

- 16.2.5. Provisions for Timber Decks
 - ≥ 2" (actual) thick
 - Planks span the distance between supporting beams
 - Designed as an assembly of wood beams partially exposed on the sides and fully exposed on one face.
 - Char rate on sides reduced to 33% of the effective char rate
 - Calculation do not address thermal separation

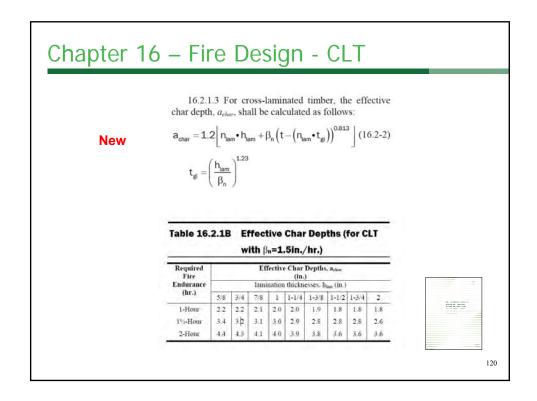


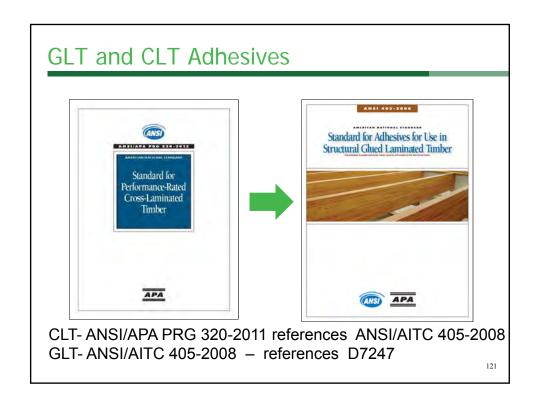


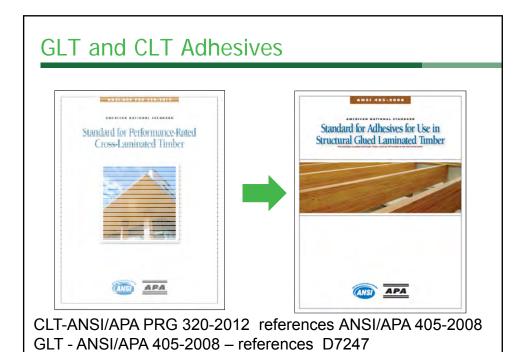

Fire Rated Glulam

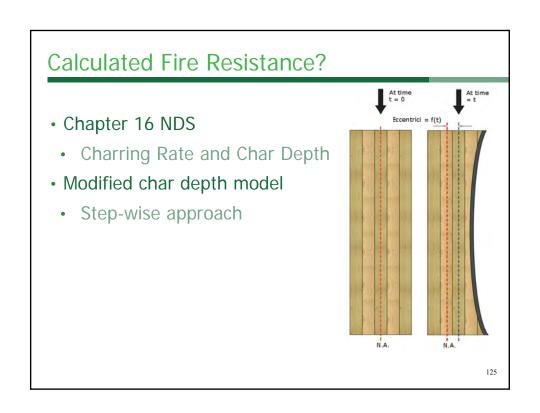

16.3 Wood Connections-

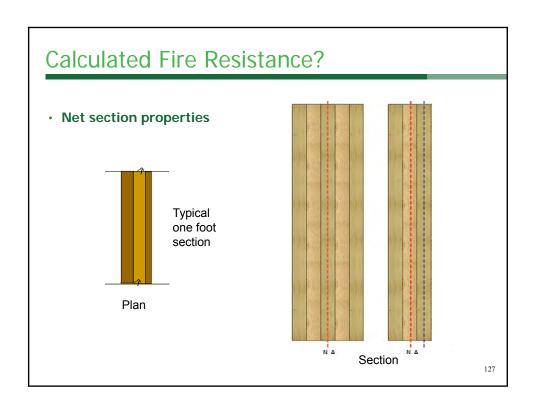
- Where fire endurance is required, connectors and fasteners shall be protected from fire exposure
 - Wood
 - · Fire-rated gypsum board
 - Coating (approved for required endurance time)





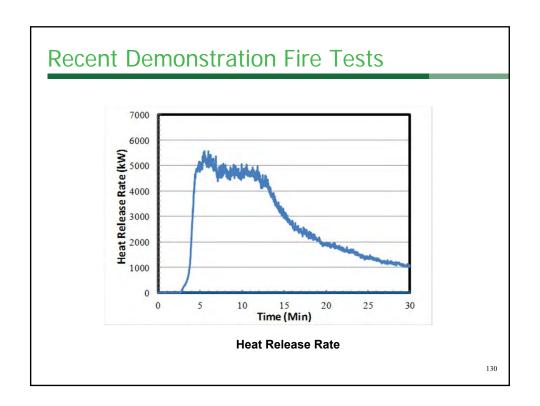


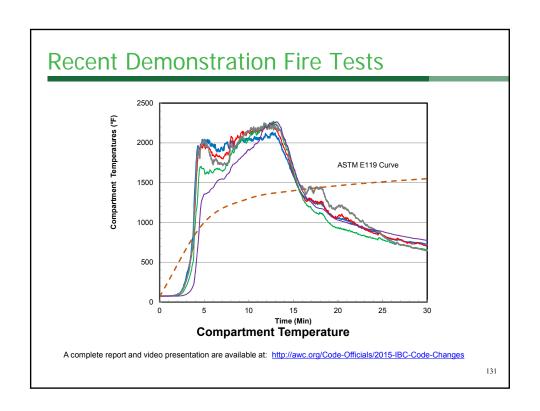




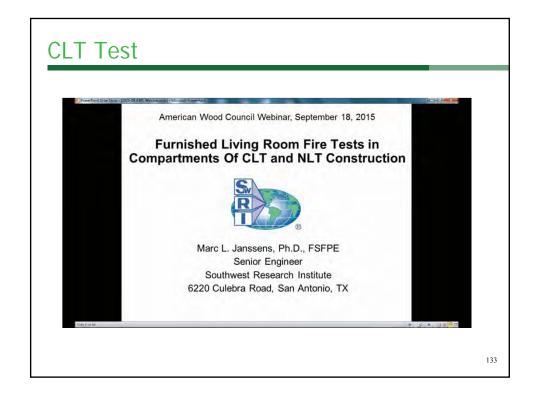
Polling Question

- 5. The calculated fire resistance in NDS Chapter 16 may be used to determine the fire resistance of exposed nail-laminated timber
 - a) True
 - b) False




128

Recent Demonstration Fire Tests


Recent Demonstration Fire Tests

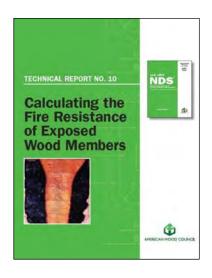
Room after 60 minutes

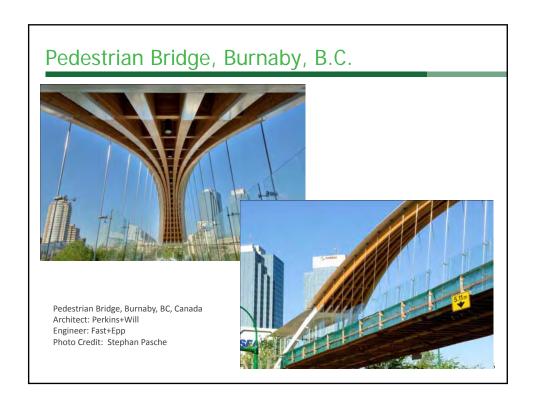
Room after drywall removed following the three-hour test

Chapter 16 - Fire (ASD)

Code Updates -Design of Fire-Resistive Exposed Wood Members

http://www.awc.org/publications/download.php


134


Chapter 16 - Fire (ASD)

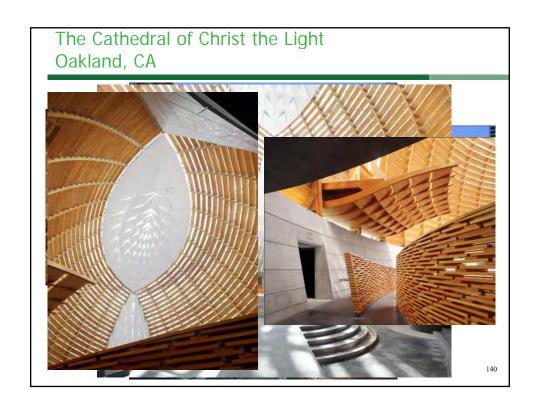
Technical Report No. 10

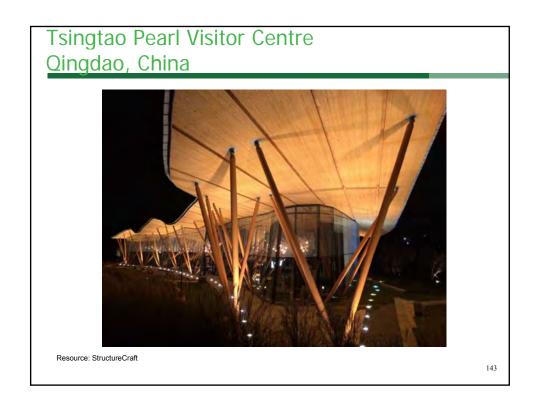
- Background on NDS provisions
- Design examples
- Floor assembly lumber joist provisions

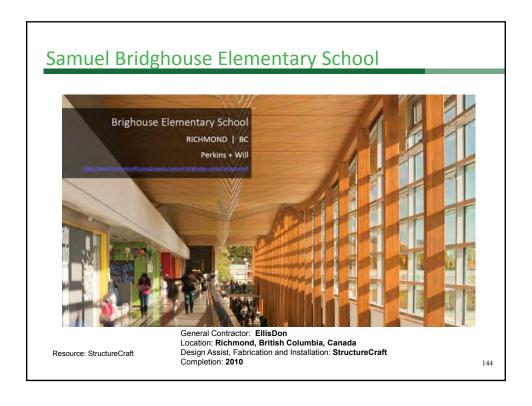
TR-10 currently being up-dated which will include CLT Free download www.awc.org

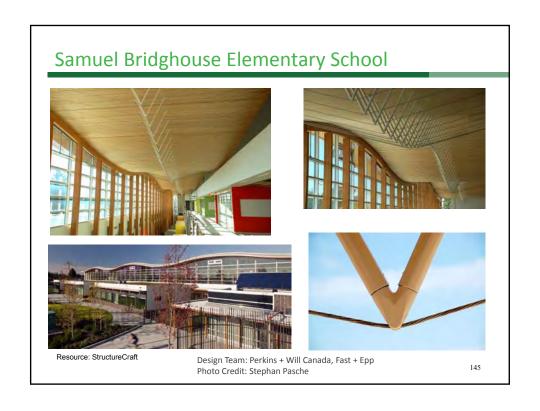
The Cathedral of Christ the Light Oakland, CA

Design Team: Skidmore Owings & Merrill, Craig W. Harman Webcore Builders
GLT Manf: Western Wood Structures
Photo Credit: Timothy Hursley,


Cesar Rubio, and John Blaustein,


138


The Cathedral of Christ the Light Oakland, CA



Franklin Elementary School

46,200 sq. ft. 8 week assembly Architect: MSES Architects, Fairmont, WV

Source: LignaTerra

148

Franklin Elementary School

Scheduled completion date: Winter 2015

Source: LignaTerra

Questions?

AMERICAN WOOD COUNCIL

www.awc.org

info@awc.org